Control
المؤقتــــــات الــــــزمنيـــــة TIMERS
=======================
المؤقتــــــات الــــــزمنيـــــة TIMERS
المؤقتات الزمنية time
يغير التايمر وضع نقاط تلامسه بعد زمن محدد من توصيله بالتيار وبالتالى من الممكن تغيير حالة الدائرة اتوماتيكيا بعد توقيت معين .
انواع التيمرات من حيث الوظيفة :
=======================
المؤقتــــــات الــــــزمنيـــــة TIMERS
المؤقتات الزمنية time
يغير التايمر وضع نقاط تلامسه بعد زمن محدد من توصيله بالتيار وبالتالى من الممكن تغيير حالة الدائرة اتوماتيكيا بعد توقيت معين .
انواع التيمرات من حيث الوظيفة :
1- ON DELAY لحظة تغذيته بالتيار يبدأ العد التنازلى للتوقيت المضبوط عليه وعند نهاية التوقيت يتغير وضع نقاط تلامسه ويظل على هذا الوضع الجديد إلى أن تنقطع عنه التغذية فتعود نقاط تلامسه الى وضعها الطبيعى .
2- OFF DELAY لحظة تغذيته بالتيار يغير فورا وضع نقاط تلامسه ويظل على هذا الوضع الجديد حتى تنقطع عنه التغذية فى هذه اللحظة يبدأ العد التنازلى للتوقيت المضبوط عليه وبعد نهاية التوقيت تعود نقاط تلامسه الى وضعها الطبيعى .
3- ON OFF DELAY تؤدى الغرضان معا
4- المؤقت الزمنى الرعاش FLASHING TIMER عند اكتمال مسار التيار لملف المؤقت ينعكس حالة ريش تلامس المؤقت T1 ثم تعود ريش التلامس لوضعها الطبيعى لمدة T2 , ويتكرر ذلك طوال فترة اكتمال مسار التيار لبوبينة المؤقت , ولكن بمجرد انقطاع مسار التيار تعود ريش المؤقتا لوضعها الطبيعى علما بأن هذه المؤقتات لها مكانين لضبط زمن التوصيل T1 وزمن الفصل T2 .
5- المؤقتات الزمنية المبرمجة PROGRAMMABLE TIMERS وتستخدم هذه المؤقتات للتحكم فى وصل وفصل دائرة كهربية خلال ساعة معينة فى يوم معين كل اسبوع أو كل شهر أو كل سنة . ويستخدم هذا النوع من المؤقتات فى تشغيل ماكينات الديزل لوحدات التوليد خلال وقت معين كل اسبوع من اجل المحافظة على ماكينات الديزل وهو مفيد فى دوائر الATS .
ومن انواع التيمرات الشائعة من حيث التكوين:
ومن انواع التيمرات الشائعة من حيث التكوين:
1- تايمر ذات محرك : وهو مكون من محرك صغير يدير مجموعة من التروس بينها ترس رئيسى له جزء بارز يتغير وضع الجزء البارز بتغيير تدريج البكرة المسئولة عن ضبط التوقيت فيبعد أو يقرب هذا الجزءالبارز من نقطة التلامس . فإذا كان قريبا يتغير وضع نقاط التلامس بعد فترة قصيرة وكلما ابتعد طالت هذه الفترة .
2- تايمر الكترونى : وهو عبارة عن كارت يحتوى على مكونات اليكترونية مع ريلى صغير بالاضافة الى مقاومة متغيرة هى التى يضبط بواسطتها التوقيت المطلوب . ويتميز هذا النوع المطلوب بكثرة إمكانياته الوظيفية .
1– تيمر on delay بطرفين :توجد بعض أنواع تيمرات اليكترونية تحتوى على طرفين فقط تتصل توالى مع ملف الكونتاكتور المراد تشغيلة بعد زمن معين . فعند غلق النقطة R يبدأ التيمر العد التنازلى لتوقيته وبعد الزمن المحدد يصل التيار الى الملف . واكثر هذه الانواع من التيمرات يمكن ان تستخدم فى دوائر التيار المتردد أو المستمر . وكذلك بالنسبة للفولت الذى تعمل به من الممكن أن يعمل نفس التيمر على اى فولت من 24 الى 240 فولت .
2- تايمر اليكترونى off delay يحتوى هذا التيمر على اربع اطراف . يتصل الطرفان 1-2 بالتوالى مع ملف الكونتاكتور وهو الذى يعطى اشارة للملف .
اما الطرف رقم 3 فيتصل مع مفتاح أو نقطة تلامس كونتاكتور اخر تغلق عند بداية عمل التيمر . والطرف رقم 4 يتصل بالطرف الاخر لنقطة التلامس ومصدر التيار .
فى حالة غلق المفتاح ن يصل التيار مباشرا الى ملف C . وتظل على هذاا الوضع حتى يفصل المفتاح K . فيبدأ العد التنازلى لتوقيت التيمر و بعد أنتهائه يفصل التيار عن الملف C .
اما الطرف رقم 3 فيتصل مع مفتاح أو نقطة تلامس كونتاكتور اخر تغلق عند بداية عمل التيمر . والطرف رقم 4 يتصل بالطرف الاخر لنقطة التلامس ومصدر التيار .
فى حالة غلق المفتاح ن يصل التيار مباشرا الى ملف C . وتظل على هذاا الوضع حتى يفصل المفتاح K . فيبدأ العد التنازلى لتوقيت التيمر و بعد أنتهائه يفصل التيار عن الملف C .
3- تايمر هوائى : يختلف هذا النوععن النوعين السابقين فى انه لا يحتوى بداخله على محرك أو ملف أو اى مكونات اليكترونية وبالتالى لا يحتاج الى مصدر تغذية كهربية ليبدأ عمله . ولكنه عبارة عن انتفاخ حلزومنى من الكاتشوك به بلف تتغير قيمة فتحته بواسطة بكرة التدريج التى يضبط بها التوقيت المطلوب .
وبدلا من تغذيته بالتيار يركب فوق الكونتاكتور وعند تشغيل الكونتاكتور ينجذب الانتفاخ الحلزونى وحتى يعود الى وضعه الطبيعى يظل يمتلىء بالهواء من خلال فتحة البلف ةتبعا لقيمة هذه الفتحة يمتلىء الانتفاخ بسرعة إذا كانت فتحة البلف كبيرة والعكس . وعندما يمتلىء بالهواء يرتفع إلى أعلى ليغير وضع نقاط التلامس .
وبدلا من تغذيته بالتيار يركب فوق الكونتاكتور وعند تشغيل الكونتاكتور ينجذب الانتفاخ الحلزونى وحتى يعود الى وضعه الطبيعى يظل يمتلىء بالهواء من خلال فتحة البلف ةتبعا لقيمة هذه الفتحة يمتلىء الانتفاخ بسرعة إذا كانت فتحة البلف كبيرة والعكس . وعندما يمتلىء بالهواء يرتفع إلى أعلى ليغير وضع نقاط التلامس .
4- تايمر بكونتاكت زئبقى فكرة عمل هذا التيمر أن به انبوبة زجاجية على جانبيها طرفى الكونتاكت وبها كمية من الزئبق . والانبوبة مثبتة مع القلب المتحرك للملف فعند تصيلها بالتيار تجذب القلب الى اعلى وتصبح الانبوبة فى وضع مستقيم فيصل الزئبق بين طرفى الكونتاكت . وفى نفس الوقت يمتلىء الخزان الصغير بالهواء من خلال بلف لارجعى وحتى يعود القلب مرة اخرى الى اسفل يغلق الصمام لا رجعى ويتسرب الهواء خارج الخزان من خلال بلف يمكن التحكم فى قيمة فتحتة يدويا – فكلما ازدادت قيمة الفتحة كلما نفذ الهواء من الخزان فى وقت اقصر وعاد القلب الى اسفل واصبحت الانبوبة فى وضع مائل وفصلت طرفى الكونتاكت والعكس كلما ضاقت الفتحة كلما زادت فترة توصيل الكونتاكت .
يستخدم هذا النوع من المؤقتات لاضاءة السلم عند الضغط على ذر ويفصل بعد زمن معين .
هذا وكل مؤقت له TIMING DIAGRAM و CONNECTION DIAGRAM وهى تختلف من شركة الى اخرى حسب دقة التصنيع ونسبة الخطأ.
يستخدم هذا النوع من المؤقتات لاضاءة السلم عند الضغط على ذر ويفصل بعد زمن معين .
هذا وكل مؤقت له TIMING DIAGRAM و CONNECTION DIAGRAM وهى تختلف من شركة الى اخرى حسب دقة التصنيع ونسبة الخطأ.
دروس فى التحكم الألى
قام بجمعها : مهندس / ممدوح السيد الزيات
الدرس الأول
ينقسم الـــ Control إلي قسمين :
1) Manual Control 2) Automatic Control
التحكم في شئ يقصد به السيطرة على ذلك الشئ , لكي يؤدي العمل الذي تود أنت أن يعمله.
فمثلا مصباح الغرفة , إذا أردت أن أضيئه أقوم بغلق مفتاح الكهرباء الخاص به لكي يضيء
وإذا أردت أن أغلقه , قمت بالضغط على المفتاح ثانية , أي أنني أنا المتحكم في عمل هذا المفتاح , أما إذا كان المفتاح يعمل بمفرده , أي يضيء ويطفيء بمفرده , فهذا يعني أنني لست مسيطرا عليه , أي لا أستطيع التحكم فيه.
هذا المثال السابق يوضح الـــ Manual Control , أي " التحكم اليدوي" , وهنا لابد من وجود الفرد أو العامل ليقوم بعملية التحكم المطلوبة , والصورة التالية توضح ذلك :
أما الـ Automatic Control , أي " التحكم الآلي " , فهو ذلك النوع من التحكم الذي لا يتطلب وجود فرد أو عامل لكي يقوم بفعل معين عند الرغبة في عمل شيء معين , بل يقوم النظام تلقائيا بأداء شيء عند حدوث شيء آخر , وهذا ما ستفهمه عند دراسة الـ PLC أو الـ Microcontroller , وكذلك ما ستراه في هذه الدروس.
أنواع مصادر الكهرباء من حيث الفيز :-
هناك نوعان من مصادر التزويد بالكهرباء , وهما :
1) One Phase 2) Phase three
الـ one phase عبارة عن سلكين , أحدهما يعطي 220 v والآخر أرضي ( 0 v ) , ويسمى الطرف الحامل للفولت بالفيز , ولذلك نقول على هذا المصدر " واحد فيز "
وهذا المصدر يستخدم لتغذية الأجهزة الكهربائية العادية التي لا تحتاج لباور عالي , مثل أجهزة المنزل , ولكن في حالة بعض المواتير في المصانع , فإنها تحتاج إلى مصدر تغذية عالي مثل الـ 3 phase , ويكون كالآتي :
يكون فرق الجهد بين كل طرف مع الأرضي مساوي لــ 220 v , بينما يكون فرق الجهد بين كل طرفين معا مساوي لـ 380 v , أي :
فرق الجهد بين R and S = فرق الجهد بين R and T = فرق الجهد بين S and T = 380 v
لاحظ أنه تم تسميته بــ 3phase لأن له 3 أطراف حيه , أي تحمل كهرباء.
لاحظ أيضا أن التسمية R , S , T يمكن أن تختلف , فقد يطلق عليها L1 , L2 , L3 ,
أو u , v , w , كما يطلق على الأرضي رمز N , إختصار لكلمة Neutral أي متعادل .
كيفية إختيار المفتاح الكهربائي في دائرة ما ؟
الكثير من الفنيين قد يخطئون عند تصميم دائرة تحكم ما في اختيار المفاتيح الكهربية , هناك شرط يجب أن تتبعه عند اختيار المفتاح , وهو " أن يستطيع هذا المفتاح تحمل الأمبير المار فيه " , ولا ننظر للجهد , لأن المفتاح عند توصيل طرفيه , يصبح كقطعة سلك مقاومتها صغيرة جدا , فلا يسقط عليها فرق جهد كبير , ولكن أنت تعلم أن أي مصدر جهد علي يمرر أمبير عالي , وكذلك أي مصدر جهد منخفض يمرر أمبير أقل , ولذلك فإن بعض الفنيين يقولون أن هذا المفتاح لا يتحمل هذا الجهد , ولكن من الأفضل أن تقول أن هذا المفتاح لا يستطيع تحمل هذا الأمبير.
أنواع المفاتيح الكهربية Switches ؟
يوجد العديد والعديد من أشكال المفاتيح الكهربية , ولكن جميع المفاتيح الكهربية تندرج تحت أحد التصنيفين التاليين :
1) Normally Open (NO)
2) Normally Closed (NC)
NO أي أن هذا المفتاح في حالته الطبيعية, أي قبل التأثير عليه, أو قبل تنشيطه, يكون طرفيه مفتوحين, وعند تنشيطة, ينغلق طرفيه ويمرر التيار, أما الـ NC فيكون بالعكس.
لنأخذ على سبيل المثال أحد أنواع المفاتيح الهامة وهو الـ Push Button , وتلك المفاتيح تستخدم بكثرة في عملية الـ Start و الـ Stop .
لتلك المفاتيح صنفان من حيث عملية الضغط عليهم , فهناك نوع عند الضغط عليه ينزل الزر لأسفل ويبقى ثابتا في الأسفل حتى يتم الضغط عليه مرة أخرى , وهذا النوع يسمى
Permanent أي "دائم"
أما النوع الثاني , فإنه عند الضغط على الزر , فإنه ينزل , وعند رفع الإصبع , فإنه يعود إلى وضعه الأصلي , ويسمى
Temporary أي "مؤقت"
سوف نحتاج في تصميم الدوائر إلى المفاتيج الـ Temporary فقط , وسوف نذكر السبب فيما بعد .
لاحظ أن ألوان هذه المفاتيح عادة تكون " أخضر أو أحمر " , ويكون الأخضر NO
والأحمر NC , ولكن إذا إختلف اللون أو مسح , فكيف نعرف إذا كان هذا المفتاح NO أم NC ؟
في هذه الحالة سوف نستخدم ما يعرف بـ " الترقيم الدولي " , فسوف تجد على جسد المفتاح أرقام كالأتي :
13 14 أو 11 12 أو 21 22 أو 23 24 وهكذا
يكون الرقم الأول هو رقم " الكونتاكت " والرقم الثاني لتحديد نوع الكونتاكت NO أم NC , فمثلا :
13 14
الرقم 1 يعني أن هذا الكونتاكت الأول , ووجود الرقمين 3,4 يعني أنا هذا الكونتاكت NO
11 12
الرقم 1 يعني أن هذا الكونتاكت الأول , ووجود الرقمين 1,2 يعني أن هذا الكونتاكت NC
21 22
الرقم 2 يعني أن هذا الكونتاكت الثاني , ووجود الرقمين 1,2 يعني أن هذا الكونتاكت NC
طبعا المقصود بالكونتاكت هو المفتاح , فهذا الترقيم السابق مثلا 21 22 , سوف تجده فقط إذا كان لديك قطعة تحتوي على مفتاحين , كما في الشكل التالي :
وقد يكتب على جسد المفتاح أو الكونتاكت رقيمن فقط كالتالي :
3 4
هذا يعني أنه مفتاح واحد ( ولا يمكن تركيب أي مفاتيح أخرى له ) , وهو من النوع NO
ما هو رمز المفتاح " الكونتاكت " في دوائر التحكم؟
يسمى الجزء المتحرك من المفتاح بــ Pole والجزء الثابت بـ Throw , ولهذا فإن المفتاحين الموضحين يطلق عليهما : SPST أي Single Pole Single Throw وهذا لأن لكل منهما pole واحد , وThrow واحد
وهناك DPST (Double Pole Single Throw ) , ويكون على الشكل التالي
لاحظ أن هذا يعتبر " ثرو " واااااااحد , لأن عدد الثرو يحسب بعدد الـ Throw للـ Pole الواحد , ونحن نرى أن كل Pole " ينام " على Throw واحده , إذا عدد الـ Throw واحد فقط Single .
أما إذا أردنا أن نضرب مثالا على الـ DPDT , فيكون شكله كالتالي
لاحظ أن لكل Pole إثنين Throw .
خطوط الـ line diagram أو الـ Wire diagram :-
إن نظام التحكم يتكون من دائرتين أساسيتين
:
1) دائرة التحكم : وهذه الدائرة يمر بها أمبير منخفض
2) دائرة القوة : وتحمل هذه الدائرة أمبيرا عاليا جدا
لذا عندما تقرأ تخطيط كهربي لنظام تحكم , يجب أن تفرق بين الأشياء التالية :
خط رفيع أي " سلك يحمل أمبير قليل " ويسمى هذا الخط بـ Control Line
خط سميك أي "سلك يحمل أمبير عالي " ويسمى هذا الخط بـ Power Line
يجب الحرص جيدا عن التعامل مع الأسلاك , لأن التيار في الدوائر التحكمية الصناعية مثلا , يكون قاتلا .
ألوان الأسلاك :-
عند توصيل دائرة كهربية , لابد من مراعاة ألوان الأسلاك , هذا مالايعرفه الكثير من الفنيين , ولكن لابد لكل مهندس معرفة دلالات ألوان الأسلاك والإلتزام بها , فمثلا :
سلك أزرق لبني يتم توصيله بـ 24v
سلك أحمر يتم توصيله بـ 110v إلى 220v
سلك أسود يتم توصيله بالأرضي zero volt , وإذا لم نجد الأسود , يتم توصيل
الأزرق اللبني
سلك برتقالي وجود هذا السلك يعني أن الكهرباء التي يحملها ليست من هذه الكبينه,
ولكن من كابينه أخرى , فمثلا , لو أن عندك لمبة في المنزل , ورأيت
أن المهندس قد وصل هذه اللمبة بسلك كهربي برتقالي , فهذا يعني أن
تلك اللمبة تأخذ كهرباء من شقة أخرى , أو من أي مكان آخر غير
منزلك , أي أنك إذا فصلت الكهرباء عن منزلك تماما , فإن هذا المصباح سيظل يعمل.
الكونتاكتور Contactor
الكونتاكتور من أهم عناصر التحكم الآلي , بل شديد الأهمية , وهو عبارة عن علبة , تحتوي على contacts أي مفاتيح , تلك الكونتاكتس منها من يستخدم في دائرة القوى لتوصيل تيار عالي , ومنها من هو مخصص للإتصال بدائرة التحكم التي يمر بها تيار صغير .
للكونتاكتور أشكال كثيرة , وهذه إحدى أشكاله العملية :
وطبعا لابد أن تراه فعليا , فلا تكفي الدراسة النظرية , ولكن سوف أرسم رسم توضيحي لما ستراه على الكونتاكتور :
لاحظ النقاط التالية :
1) A1 – A2
إن الكونتاكتور يتكون من قطعتين حديديتين أحدهما ثابت والآخر متحرك , ويتم لف coil حول القطعة الثابتة , فإذا تم توصيل كهرباء لهذا الـ coil , فإنه سوف يحول قطعة الحديد الثابتة إلى مغناطيس يجذب القطعة المتحركة , فيتم الإتصال بين القطعتين , أي يتم غلق مفاتيح الكونتاكتور , وعند فصل التيار عن الـ coil يعود الكونتاكتور إلى وضعه الأصلي عن طريق "زنبرك" أومايعرف باسم " ياي" أو " بوبينة " تدفع القطعة المتحركة إلى أعلى مره أخرى , والشكل التالي للتوضيح :
وعفوا لسوء الرسم .
والآن , فإن النقطتين A1-A2 هما طرفا الـ coil , فلكي يعمل الكونتاكتور على غلق مفاتيحه , يتم توصيل كهرباء ( 220 فولت أو 110 فولت حسب نوع الكونتاكتور ) للنقطتين A1-A2 .
2) L1, L2, L3 – T1, T2, T3
تلك النقاط لتوصيل أطراف الـ 3phase generator بالماتور , سوف تجد 3 أطراف للماتور , فتقوم بإدخال تلك الأطراف في T1,T2,T3 وتدخل الثلاث فيزات كهرباء في L1,L2,L3
أو العكس .
3) 13-14
هي كونتاكت NO مضافة للكونتاكتور , وقد يوجد أكثر من ذلك , وقد تكون NO أو NC , ولكن لماذا تضاف تلك الكونتاكت للكونتاكتور ؟
سوف نعرف ذلك لاحقا , ولكن لابد أن ننتبه إلى أن الكونتاكتس التي تحمل تيارا عاليا هي
L1, L2, L3 – T1, T2, T3 فقططططططط, أما الكونتاكت 13 – 14 فتمرر تيارا تحكم.
ما هو الفرق بين الكونتاكتور والريلاي Relay ؟
كلاهما يعمل بنفس الطريقة , وللكن الفرق الوحيد أن الريلاي تكون جميع كونتاكاته مخصصه لتعمل في دوائر التحكم فقط , وليس كالكونتاكتور الذي يحتوي على كونتاكتس تعمل في دائرة القوة وأخرى تعمل في دائرة التحكم .
تعليقات